加州大学伯克利分校 2017:深度增强学习课程
本课程共57集 翻译完 欢迎学习
课程介绍:https://www.youtube.com/playlist?list=PLkFD6_40KJIwTmSbCv9OVJB3YaO4sFwkX CS294-112 Deep Reinforcement Learning Sp17 课程主页:http://rll.berkeley.edu/deeprlcourse/
课程列表
【第1集】Introduction and course overview (Levine, Finn, Schulman)(上) 译
【第2集】Introduction and course overview (Levine, Finn, Schulman)(中) 译
【第3集】Introduction and course overview (Levine, Finn, Schulman)(下) 译
【第4集】Supervised learning and decision making (Levine)(上) 译
【第5集】Supervised learning and decision making (Levine)(中) 译
【第6集】Supervised learning and decision making (Levine)(下) 译
【第7集】Optimal control and planning (Levine)(上) 译
【第8集】Optimal control and planning (Levine)(中) 译
【第9集】Optimal control and planning (Levine)(下) 译
【第10集】Learning dynamical system models from data (Levine)(上) 译
【第11集】Learning dynamical system models from data (Levine)(中) 译
【第12集】Learning dynamical system models from data (Levine)(下) 译
【第13集】Learning policies by imitating optimal controllers (Levine)(上) 译
【第14集】Learning policies by imitating optimal controllers (Levine)(中) 译
【第15集】Learning policies by imitating optimal controllers (Levine)(下) 译
【第16集】RL definitions, value iteration, policy iteration (Schulman)(上) 译
【第17集】RL definitions, value iteration, policy iteration (Schulman)(中) 译
【第18集】RL definitions, value iteration, policy iteration (Schulman)(下) 译
【第19集】Reinforcement learning with policy gradients (Schulman)(上) 译
【第20集】Reinforcement learning with policy gradients (Schulman)(中) 译
【第21集】Reinforcement learning with policy gradients (Schulman)(下) 译
【第22集】Learning Q-functions: Q-learning, SARSA, and others (Schulman)(上) 译
【第23集】Learning Q-functions: Q-learning, SARSA, and others (Schulman)(中) 译
【第24集】Learning Q-functions: Q-learning, SARSA, and others (Schulman)(下) 译
【第25集】Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc(上) 译
【第26集】Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc(中) 译
【第27集】Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc(下) 译
【第28集】Advanced topics in imitation and safety (Finn)(上) 译
【第29集】Advanced topics in imitation and safety (Finn)(中) 译
【第30集】Advanced topics in imitation and safety (Finn)(下) 译
【第31集】Inverse RL: acquiring objectives from demonstration (Finn)(上) 译
【第32集】Inverse RL: acquiring objectives from demonstration (Finn)(中) 译
【第33集】Inverse RL: acquiring objectives from demonstration (Finn)(下) 译
【第34集】Advanced policy gradients: natural gradient and TRPO (Schulman)(上) 译
【第35集】Advanced policy gradients: natural gradient and TRPO (Schulman)(中) 译
【第36集】Advanced policy gradients: natural gradient and TRPO (Schulman)(下) 译
【第37集】Policy gradient variance reduction and actor-critic algorithms (Schulman)(上) 译
【第38集】Policy gradient variance reduction and actor-critic algorithms (Schulman)(中) 译
【第39集】Policy gradient variance reduction and actor-critic algorithms (Schulman)(下) 译
【第40集】Summary of policy gradients and temporal difference methods (Schulman)(上) 译
【第41集】Summary of policy gradients and temporal difference methods (Schulman)(中) 译
【第42集】Summary of policy gradients and temporal difference methods (Schulman)(下) 译
【第43集】The exploration problem (Schulman)(上) 译
【第44集】The exploration problem (Schulman)(中) 译
【第45集】The exploration problem (Schulman)(下) 译
【第46集】Parallel RL algorithms, open problems and challenges in deep reinforcement(上) 译
【第47集】Parallel RL algorithms, open problems and challenges in deep reinforcement(中) 译
【第48集】Parallel RL algorithms, open problems and challenges in deep reinforcement(下) 译
【第49集】Transfer in Reinforcement Learning (Finn)(上) 译
【第50集】Transfer in Reinforcement Learning (Finn)(中) 译
【第51集】Transfer in Reinforcement Learning (Finn)(下) 译
【第52集】Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z(上) 译
【第53集】Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z(中) 译
【第54集】Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z(下) 译
【第55集】Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar(上) 译
【第56集】Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar(中) 译
【第57集】Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar(下) 译
查看全部课程
相关推荐