
艾伦·爱德曼和茱莉亚
本课程共101集 翻译完 欢迎学习
课程介绍:https://ocw.mit.edu/18-065S18 MIT 18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018 Professor Strang describes the four topics of the course: Linear Algebra, Deep Learning, Optimization, and Statistics.
课程列表
【第1集】-Course Introduction of 18.065 by Professor Strang 译
【第2集】-1. The Column Space of A Contains All Vectors Ax(上) 译
【第3集】-1. The Column Space of A Contains All Vectors Ax(中) 译
【第4集】-1. The Column Space of A Contains All Vectors Ax(下) 译
【第5集】-2. Multiplying and Factoring Matrices(上) 译
【第6集】-2. Multiplying and Factoring Matrices(中) 译
【第7集】-2. Multiplying and Factoring Matrices(下) 译
【第8集】-3. Orthonormal Columns in Q Give Q'Q = I(上) 译
【第9集】-3. Orthonormal Columns in Q Give Q'Q = I(中) 译
【第10集】-3. Orthonormal Columns in Q Give Q'Q = I(下) 译
【第11集】-4. Eigenvalues and Eigenvectors(上) 译
【第12集】-4. Eigenvalues and Eigenvectors(中) 译
【第13集】-4. Eigenvalues and Eigenvectors(下) 译
【第14集】-5. Positive Definite and Semidefinite Matrices(上) 译
【第15集】-5. Positive Definite and Semidefinite Matrices(中) 译
【第16集】-5. Positive Definite and Semidefinite Matrices(下) 译
【第17集】-6. Singular Value Decomposition (SVD)(上) 译
【第18集】-6. Singular Value Decomposition (SVD)(中) 译
【第19集】-6. Singular Value Decomposition (SVD)(下) 译
【第20集】-7. Eckart-Young - The Closest Rank k Matrix to A(上) 译
【第21集】-7. Eckart-Young - The Closest Rank k Matrix to A(中) 译
【第22集】-7. Eckart-Young - The Closest Rank k Matrix to A(下) 译
【第23集】-8. Norms of Vectors and Matrices(上) 译
【第24集】-8. Norms of Vectors and Matrices(中) 译
【第25集】-8. Norms of Vectors and Matrices(下) 译
【第26集】-9. Four Ways to Solve Least Squares Problems(上) 译
【第27集】-9. Four Ways to Solve Least Squares Problems(中) 译
【第28集】-9. Four Ways to Solve Least Squares Problems(下) 译
【第29集】-10. Survey of Difficulties with Ax = b(上) 译
【第30集】-10. Survey of Difficulties with Ax = b(中) 译
【第31集】-10. Survey of Difficulties with Ax = b(下) 译
【第32集】-11. Minimizing _x_ Subject to Ax = b(上) 译
【第33集】-11. Minimizing _x_ Subject to Ax = b(中) 译
【第34集】-11. Minimizing _x_ Subject to Ax = b(下) 译
【第35集】-12. Computing Eigenvalues and Singular Values(上) 译
【第36集】-12. Computing Eigenvalues and Singular Values(中) 译
【第37集】-12. Computing Eigenvalues and Singular Values(下) 译
【第38集】-13. Randomized Matrix Multiplication(上) 译
【第39集】-13. Randomized Matrix Multiplication(中) 译
【第40集】-13. Randomized Matrix Multiplication(下) 译
【第41集】-14. Low Rank Changes in A and Its Inverse(上) 译
【第42集】-14. Low Rank Changes in A and Its Inverse(中) 译
【第43集】-14. Low Rank Changes in A and Its Inverse(下) 译
【第44集】-15. Matrices A(t) Depending on t, Derivative = dA_dt(上) 译
【第45集】-15. Matrices A(t) Depending on t, Derivative = dA_dt(中) 译
【第46集】-15. Matrices A(t) Depending on t, Derivative = dA_dt(下) 译
【第47集】-16. Derivatives of Inverse and Singular Values(上) 译
【第48集】-16. Derivatives of Inverse and Singular Values(中) 译
【第49集】-16. Derivatives of Inverse and Singular Values(下) 译
【第50集】-17. Rapidly Decreasing Singular Values(上) 译
【第51集】-17. Rapidly Decreasing Singular Values(中) 译
【第52集】-17. Rapidly Decreasing Singular Values(下) 译
【第53集】-18. Counting Parameters in SVD, LU, QR, Saddle Points(上) 译
【第54集】-18. Counting Parameters in SVD, LU, QR, Saddle Points(中) 译
【第55集】-18. Counting Parameters in SVD, LU, QR, Saddle Points(下) 译
【第56集】-19. Saddle Points Continued, Maxmin Principle(上) 译
【第57集】-19. Saddle Points Continued, Maxmin Principle(中) 译
【第58集】-19. Saddle Points Continued, Maxmin Principle(下) 译
【第59集】-20. Definitions and Inequalities(上) 译
【第60集】-20. Definitions and Inequalities(中) 译
【第61集】-20. Definitions and Inequalities(下) 译
【第62集】-21. Minimizing a Function Step by Step(上) 译
【第63集】-21. Minimizing a Function Step by Step(中) 译
【第64集】-21. Minimizing a Function Step by Step(下) 译
【第65集】-22. Gradient Descent - Downhill to a Minimum(上) 译
【第66集】-22. Gradient Descent - Downhill to a Minimum(中) 译
【第67集】-22. Gradient Descent - Downhill to a Minimum(下) 译
【第68集】-23. Accelerating Gradient Descent (Use Momentum)(上) 译
【第69集】-23. Accelerating Gradient Descent (Use Momentum)(中) 译
【第70集】-23. Accelerating Gradient Descent (Use Momentum)(下) 译
【第71集】-24. Linear Programming and Two-Person Games(上) 译
【第72集】-24. Linear Programming and Two-Person Games(中) 译
【第73集】-24. Linear Programming and Two-Person Games(下) 译
【第74集】-25. Stochastic Gradient Descent(上) 译
【第75集】-25. Stochastic Gradient Descent(中) 译
【第76集】-25. Stochastic Gradient Descent(下) 译
【第77集】-26. Structure of Neural Nets for Deep Learning(上) 译
【第78集】-26. Structure of Neural Nets for Deep Learning(中) 译
【第79集】-26. Structure of Neural Nets for Deep Learning(下) 译
【第80集】-27. Backpropagation - Find Partial Derivatives(上) 译
【第81集】-27. Backpropagation - Find Partial Derivatives(中) 译
【第82集】-27. Backpropagation - Find Partial Derivatives(下) 译
【第83集】-30. Completing a Rank-One Matrix, Circulants!(上) 译
【第84集】-30. Completing a Rank-One Matrix, Circulants!(中) 译
【第85集】-30. Completing a Rank-One Matrix, Circulants!(下) 译
【第86集】-31. Eigenvectors of Circulant Matrices - Fourier Matrix(上) 译
【第87集】-31. Eigenvectors of Circulant Matrices - Fourier Matrix(中) 译
【第88集】-31. Eigenvectors of Circulant Matrices - Fourier Matrix(下) 译
【第89集】-32. ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule(上) 译
【第90集】-32. ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule(中) 译
【第91集】-32. ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule(下) 译
【第92集】-33. Neural Nets and the Learning Function(上) 译
【第93集】-33. Neural Nets and the Learning Function(中) 译
【第94集】-33. Neural Nets and the Learning Function(下) 译
【第95集】-34. Distance Matrices, Procrustes Problem(上) 译
【第96集】-34. Distance Matrices, Procrustes Problem(下) 译
【第97集】-35. Finding Clusters in Graphs(上) 译
【第98集】-35. Finding Clusters in Graphs(中) 译
【第99集】-35. Finding Clusters in Graphs(下) 译
【第100集】-36. Alan Edelman and Julia Language(上) 译
【第101集】-36. Alan Edelman and Julia Language(中) 译
【第102集】-36. Alan Edelman and Julia Language(下) 译
查看全部课程
相关推荐

15:34
I.Am.a.Killer.S02...
1492播放