APP下载
反馈
艾伦·爱德曼和茱莉亚
本课程共101集 翻译完 欢迎学习

课程介绍:https://ocw.mit.edu/18-065S18 MIT 18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018 Professor Strang describes the four topics of the course: Linear Algebra, Deep Learning, Optimization, and Statistics.

立即播放
用手机看
课程免费缓存,随时观看~
扫码下载网易公开课APP
收藏
课程列表
【第1集】-Course Introduction of 18.065 by Professor Strang
【第2集】-1. The Column Space of A Contains All Vectors Ax(上)
【第3集】-1. The Column Space of A Contains All Vectors Ax(中)
【第4集】-1. The Column Space of A Contains All Vectors Ax(下)
【第5集】-2. Multiplying and Factoring Matrices(上)
【第6集】-2. Multiplying and Factoring Matrices(中)
【第7集】-2. Multiplying and Factoring Matrices(下)
【第8集】-3. Orthonormal Columns in Q Give Q'Q = I(上)
【第9集】-3. Orthonormal Columns in Q Give Q'Q = I(中)
【第10集】-3. Orthonormal Columns in Q Give Q'Q = I(下)
【第11集】-4. Eigenvalues and Eigenvectors(上)
【第12集】-4. Eigenvalues and Eigenvectors(中)
【第13集】-4. Eigenvalues and Eigenvectors(下)
【第14集】-5. Positive Definite and Semidefinite Matrices(上)
【第15集】-5. Positive Definite and Semidefinite Matrices(中)
【第16集】-5. Positive Definite and Semidefinite Matrices(下)
【第17集】-6. Singular Value Decomposition (SVD)(上)
【第18集】-6. Singular Value Decomposition (SVD)(中)
【第19集】-6. Singular Value Decomposition (SVD)(下)
【第20集】-7. Eckart-Young - The Closest Rank k Matrix to A(上)
【第21集】-7. Eckart-Young - The Closest Rank k Matrix to A(中)
【第22集】-7. Eckart-Young - The Closest Rank k Matrix to A(下)
【第23集】-8. Norms of Vectors and Matrices(上)
【第24集】-8. Norms of Vectors and Matrices(中)
【第25集】-8. Norms of Vectors and Matrices(下)
【第26集】-9. Four Ways to Solve Least Squares Problems(上)
【第27集】-9. Four Ways to Solve Least Squares Problems(中)
【第28集】-9. Four Ways to Solve Least Squares Problems(下)
【第29集】-10. Survey of Difficulties with Ax = b(上)
【第30集】-10. Survey of Difficulties with Ax = b(中)
【第31集】-10. Survey of Difficulties with Ax = b(下)
【第32集】-11. Minimizing _x_ Subject to Ax = b(上)
【第33集】-11. Minimizing _x_ Subject to Ax = b(中)
【第34集】-11. Minimizing _x_ Subject to Ax = b(下)
【第35集】-12. Computing Eigenvalues and Singular Values(上)
【第36集】-12. Computing Eigenvalues and Singular Values(中)
【第37集】-12. Computing Eigenvalues and Singular Values(下)
【第38集】-13. Randomized Matrix Multiplication(上)
【第39集】-13. Randomized Matrix Multiplication(中)
【第40集】-13. Randomized Matrix Multiplication(下)
【第41集】-14. Low Rank Changes in A and Its Inverse(上)
【第42集】-14. Low Rank Changes in A and Its Inverse(中)
【第43集】-14. Low Rank Changes in A and Its Inverse(下)
【第44集】-15. Matrices A(t) Depending on t, Derivative = dA_dt(上)
【第45集】-15. Matrices A(t) Depending on t, Derivative = dA_dt(中)
【第46集】-15. Matrices A(t) Depending on t, Derivative = dA_dt(下)
【第47集】-16. Derivatives of Inverse and Singular Values(上)
【第48集】-16. Derivatives of Inverse and Singular Values(中)
【第49集】-16. Derivatives of Inverse and Singular Values(下)
【第50集】-17. Rapidly Decreasing Singular Values(上)
【第51集】-17. Rapidly Decreasing Singular Values(中)
【第52集】-17. Rapidly Decreasing Singular Values(下)
【第53集】-18. Counting Parameters in SVD, LU, QR, Saddle Points(上)
【第54集】-18. Counting Parameters in SVD, LU, QR, Saddle Points(中)
【第55集】-18. Counting Parameters in SVD, LU, QR, Saddle Points(下)
【第56集】-19. Saddle Points Continued, Maxmin Principle(上)
【第57集】-19. Saddle Points Continued, Maxmin Principle(中)
【第58集】-19. Saddle Points Continued, Maxmin Principle(下)
【第59集】-20. Definitions and Inequalities(上)
【第60集】-20. Definitions and Inequalities(中)
【第61集】-20. Definitions and Inequalities(下)
【第62集】-21. Minimizing a Function Step by Step(上)
【第63集】-21. Minimizing a Function Step by Step(中)
【第64集】-21. Minimizing a Function Step by Step(下)
【第65集】-22. Gradient Descent - Downhill to a Minimum(上)
【第66集】-22. Gradient Descent - Downhill to a Minimum(中)
【第67集】-22. Gradient Descent - Downhill to a Minimum(下)
【第68集】-23. Accelerating Gradient Descent (Use Momentum)(上)
【第69集】-23. Accelerating Gradient Descent (Use Momentum)(中)
【第70集】-23. Accelerating Gradient Descent (Use Momentum)(下)
【第71集】-24. Linear Programming and Two-Person Games(上)
【第72集】-24. Linear Programming and Two-Person Games(中)
【第73集】-24. Linear Programming and Two-Person Games(下)
【第74集】-25. Stochastic Gradient Descent(上)
【第75集】-25. Stochastic Gradient Descent(中)
【第76集】-25. Stochastic Gradient Descent(下)
【第77集】-26. Structure of Neural Nets for Deep Learning(上)
【第78集】-26. Structure of Neural Nets for Deep Learning(中)
【第79集】-26. Structure of Neural Nets for Deep Learning(下)
【第80集】-27. Backpropagation - Find Partial Derivatives(上)
【第81集】-27. Backpropagation - Find Partial Derivatives(中)
【第82集】-27. Backpropagation - Find Partial Derivatives(下)
【第83集】-30. Completing a Rank-One Matrix, Circulants!(上)
【第84集】-30. Completing a Rank-One Matrix, Circulants!(中)
【第85集】-30. Completing a Rank-One Matrix, Circulants!(下)
【第86集】-31. Eigenvectors of Circulant Matrices - Fourier Matrix(上)
【第87集】-31. Eigenvectors of Circulant Matrices - Fourier Matrix(中)
【第88集】-31. Eigenvectors of Circulant Matrices - Fourier Matrix(下)
【第89集】-32. ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule(上)
【第90集】-32. ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule(中)
【第91集】-32. ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule(下)
【第92集】-33. Neural Nets and the Learning Function(上)
【第93集】-33. Neural Nets and the Learning Function(中)
【第94集】-33. Neural Nets and the Learning Function(下)
【第95集】-34. Distance Matrices, Procrustes Problem(上)
【第96集】-34. Distance Matrices, Procrustes Problem(下)
【第97集】-35. Finding Clusters in Graphs(上)
【第98集】-35. Finding Clusters in Graphs(中)
【第99集】-35. Finding Clusters in Graphs(下)
【第100集】-36. Alan Edelman and Julia Language(上)
【第101集】-36. Alan Edelman and Julia Language(中)
【第102集】-36. Alan Edelman and Julia Language(下)
查看全部课程
相关推荐
05:03
一、 难点解析:复句概说(下)
1500播放
03:05
零卡代糖的饮料,到底能不能放心饮用...
1946播放
07:25
梁祝||双双飞过万世千生去(六)(...
911播放
05:13
日本芯片为何没落?中国芯片路在何方...
1764播放
01:15
军事微课堂:如果突发地震,该怎样科...
710播放
02:10
如何知道自己睡眠不足?
9379播放
06:38
台湾人每天离不开的擂茶,还是当地人...
1389播放
03:24
第7集 细腻真挚的情感
1248播放
16:48
【P21P21】普通动物学(中)
1324播放
30:12
【中苏合拍】彩色纪录片:中国人民的...
1459播放
00:30
糖尿病别怕麻烦,定期检查受益的是自...
1333播放
04:00
粉丝问,蟹爪兰嫁接9天了,成活了没...
1003播放
00:25
日本单轨列车的变轨系统
624播放